286 research outputs found

    Structural and analytical characterization by scanning transmission electron microscopy of silicon-based nanostructures

    Get PDF
    A few recent applications of scanning transmission electron microscopy (STEM) methods to problems of interest for nanoelectronics are reported. They include nanometer-scaled dopant profiles by Z-contrast and strain mapping by convergent beam diffraction

    Scenario-based assessment of buildings' damage and population exposure due to earthquake-induced tsunamis for the town of Alexandria, Egypt

    Get PDF
    Abstract. Alexandria is the second biggest city in Egypt with regards to population, is a key economic area in northern Africa and has very important tourist activity. Historical records indicate that it was severely affected by a number of tsunami events. In this work we assess the tsunami hazard by running numerical simulations of tsunami impact in Alexandria through the worst-case credible tsunami scenario analysis (WCTSA). We identify three main seismic sources: the western Hellenic Arc (WHA – reference event AD 365, Mw = 8.5), the eastern Hellenic Arc (EHA – reference event 1303, Mw = 8.0) and the Cyprus Arc (CA – hypothetical scenario earthquake with Mw = 8.0), inferred from the tectonic setting and from historical tsunami catalogues. All numerical simulations are carried out in two sea level conditions (mean sea level and maximum high-tide sea level) by means of the code UBO-TSUFD, developed and maintained by the Tsunami Research Team of the University of Bologna. Relevant tsunami metrics are computed for each scenario and then used to build aggregated fields such as the maximum flood depth and the maximum inundation area. We find that the case that produces the most relevant flooding in Alexandria is the EHA scenario, with wave heights up to 4 m. The aggregate fields are used for a building vulnerability assessment according to a methodology developed in the framework of the EU-FP6 project SCHEMA and further refined in this study, based on the adoption of a suitable building damage matrix and on water inundation depth. It is found that in the districts of El Dekhila and Al Amriyah, to the south-west of the port of Dekhila, over 12 000 (13 400 in the case of maximum high tide) buildings could be affected and hundreds of them could sustain damaging consequences, ranging from critical damage to total collapse. It is also found that in the same districts tsunami inundation covers an area of about 15 km2, resulting in more than 150 000 (165 000 in the case of maximum high tide) residents being exposed

    Assessment of tsunami hazards for the Central American Pacific coast from southern Mexico to northern Peru

    Get PDF
    Abstract. Central America (CA), from Guatemala to Panama, has been struck by at least 52 tsunamis between 1539 and 2013, and in the extended region from Mexico to northern Peru (denoted as ECA, Extended Central America in this paper) the number of recorded tsunamis in the same time span is more than 100, most of which were triggered by earthquakes located in the Middle American Trench that runs parallel to the Pacific coast. The most severe event in the catalogue is the tsunami that occurred on 2 September 1992 off Nicaragua, with run-up measured in the range of 5–10 m in several places along the Nicaraguan coast. The aim of this paper is to assess the tsunami hazard on the Pacific coast of this extended region, and to this purpose a hybrid probabilistic-deterministic analysis is performed, that is adequate for tsunamis generated by earthquakes. More specifically, the probabilistic approach is used to compute the Gutenberg–Richter coefficients of the main seismic tsunamigenic zones of the area and to estimate the annual rate of occurrence of tsunamigenic earthquakes and their corresponding return period. The output of the probabilistic part of the method is taken as input by the deterministic part, which is applied to calculate the tsunami run-up distribution along the coast

    Tsunami hazard for the city of Catania, eastern Sicily, Italy, assessed by means of Worst-case Credible Tsunami Scenario Analysis (WCTSA)

    Get PDF
    Eastern Sicily is one of the coastal areas most exposed to earthquakes and tsunamis in Italy. The city of Catania that developed between the eastern base of Etna volcano and the Ionian Sea is, together with the neighbour coastal belt, under the strong menace of tsunamis. This paper addresses the estimation of the tsunami hazard for the city of Catania by using the technique of the Worst-case Credible Tsunami Scenario Analysis (WCTSA) and is focused on a target area including the Catania harbour and the beach called La Plaia where many human activities develop and many important structures are present. The aim of the work is to provide a detailed tsunami hazard analysis, firstly by building scenarios that are proposed on the basis of tectonic considerations and of the largest historical events that hit the city in the past, and then by combining all the information deriving from single scenarios into a unique aggregated scenario that can be viewed as the <i>worst virtual scenario</i>. Scenarios have been calculated by means of numerical simulations on computational grids of different resolutions, passing from 3 km on a regional scale to 40 m in the target area. La Plaia beach results to be the area most exposed to tsunami inundation, with inland penetration up to hundreds of meters. The harbour turns out to be more exposed to tsunami waves with low frequencies: in particular, it is found that the major contribution to the hazard in the harbour is due to a tsunami from a remote source, which propagates with much longer periods than tsunamis from local sources. This work has been performed in the framework of the EU-funded project SCHEMA

    Tsunami hazard for the city of Catania, eastern Sicily, Italy, assessed by means of Worst-case Credible Tsunami Scenario Analysis (WCTSA)

    Get PDF
    Abstract. Eastern Sicily is one of the coastal areas most exposed to earthquakes and tsunamis in Italy. The city of Catania that developed between the eastern base of Etna volcano and the Ionian Sea is, together with the neighbour coastal belt, under the strong menace of tsunamis. This paper addresses the estimation of the tsunami hazard for the city of Catania by using the technique of the Worst-case Credible Tsunami Scenario Analysis (WCTSA) and is focused on a target area including the Catania harbour and the beach called La Plaia where many human activities develop and many important structures are present. The aim of the work is to provide a detailed tsunami hazard analysis, firstly by building scenarios that are proposed on the basis of tectonic considerations and of the largest historical events that hit the city in the past, and then by combining all the information deriving from single scenarios into a unique aggregated scenario that can be viewed as the worst virtual scenario. Scenarios have been calculated by means of numerical simulations on computational grids of different resolutions, passing from 3 km on a regional scale to 40 m in the target area. La Plaia beach results to be the area most exposed to tsunami inundation, with inland penetration up to hundreds of meters. The harbour turns out to be more exposed to tsunami waves with low frequencies: in particular, it is found that the major contribution to the hazard in the harbour is due to a tsunami from a remote source, which propagates with much longer periods than tsunamis from local sources. This work has been performed in the framework of the EU-funded project SCHEMA

    Tsunamis From Submarine Collapses Along the Eastern Slope of the Gela Basin (Strait of Sicily)

    Get PDF
    Geophysical surveys in the eastern slope of the Gela Basin (Strait of Sicily, central Mediterranean) contributed to the identification of several episodes of sediment mass transport, recorded by scars and deposits of various dimensions within the Pleistocene succession. In addition to a huge failure called Gela Slide with volume exceeding 600 km3, the most studied events show volumes estimated between 0.5 and 1.5 km3, which is common to many other submarine landslide deposits in this region and that can therefore be considered as a characteristic value. In this work, the tsunamigenic potential of two of such landslides, the so-called Northern Twin Slide and South Gela Basin Slide located about 50 km apart along the eastern slope of the Gela Basin, are investigated using numerical codes that describe the onset and motion of the slide, as well as the ensuing tsunami generation and propagation. The results provide the wave height of these tsunami events on the coast of southern Sicily and Malta and can be taken as representative of the tsunamigenic potential of typical landslides occurring along the slope of the Gela Basin

    Tsunami potential source in the eastern Sea of Marmara (NW Turkey), along the North Anatolian Fault system

    Get PDF
    Based on morphobathymetric and seismic reflection data, we studied a large landslide body from the eastern Sea of Marmara (NW Turkey), along the main strand of the North Anatolian Fault, one of the most seismically active geological structures on Earth. Due to its location and dimensions, the sliding body may cause tsunamis in case of failure possibly induced by an earthquake. This could affect heavily the coasts of the Sea of Marmara and the densely populated Istanbul Metropolitan area, with its exposed cultural heritage assets. After a geological and geometrical description of the landslide, thanks to high-resolution marine geophysical data, we simulated numerically possible effects of its massive mobilization along a basal displacement surface. Results, within significant uncertainties linked to dimensions and kinematics of the sliding mass, suggest generation of tsunamis exceeding 15–20 m along a broad coastal sector of the eastern Sea of Marmara. Although creeping processes or partial collapse of the landslide body could lower the associated tsunami risk, its detection stresses the need for collecting more marine geological/geophysical data in the region to better constrain hazards and feasibility of specific emergency plans

    The tsunamigenic potential of landslide-generated tsunamis on the Vavilov seamount

    Get PDF
    The investigation of submarine volcanoes and the tsunamigenic potential of possible movements on their flanks is arduous. In most cases, the lack of specific information about the eruptions’ history and their consequences does not allow a comprehensive analysis in terms of hazard. Nevertheless, useful clues on the possible occurrence of mass movements on seamounts can be obtained from a series of research fields. These account for morphological studies, observations of hydrothermal activity, collection of geophysical data (for example, detailed DEM, seismic profiles, magnetic data), etc. In this context, this study presents new bathymetric data of the Vavilov submarine volcano (Tyrrhenian Sea, Italy) and a detailed morphological analysis of the structure. The latter allows the identification of zones potentially prone to mass movements and the development of numerical scenarios to investigate the tsunami potential associated to these movements on the Vavilov flanks. Results prove that the waves generated by the mass displacements in the proposed scenarios (involving sliding volumes between 0.32 km3 and 1.7 km3) reach maximum values in the order of centimetres, not considering dispersive effects. Eventually, a scenario involving the partial collapse of the west flank of the Vavilov Seamount is simulated, although the occurrence of such an event in the past is still debated due to the uncertainties related to the origin and development of the volcano dome. In this scenario, water elevation as high as 10 m are found in large portions of the Tyrrhenian coasts: waves are large enough to emplace sizeable tsunami deposits onshore, that could have been preserved until today in some specific stretches of the coast and could be detected by a finalised geological search. This study belongs to a series of works devoted to the submarine structures of the Tyrrhenian Sea aiming to disclose the tsunamigenic potential of submarine mass movements on their flanks
    • …
    corecore